论文标题

适合组的对称稳定过程

Symmetric Stable Processes on Amenable Groups

论文作者

Avraham-Re'em, Nachi

论文摘要

我们表明,如果$ g $是一个可计数的群体,那么每个固定的非高斯对称$α$ stable(s $α$ s)的过程由$ g $索引时,只有当它弱混合时,并且仅当它是ergodic的,并且仅当它的Rosinski Minimal Spectral Sepanditation null null。这扩展了$ \ mathbb {z}^d $的结果,并在所有可计数的amenable组中回答了P. Roy在离散的nilpotent组上的问题。结果,我们在Heisenberg组和许多Abelian群体上构建了(0,2)的所有$α$(0,2),固定的S $α$ S $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ cAUM的混合量较弱,但并非强烈混合。

We show that if $G$ is a countable amenable group, then every stationary non-Gaussian symmetric $α$-stable (S$α$S) process indexed by $G$ is ergodic if and only if it is weakly-mixing, and it is ergodic if and only if its Rosinski minimal spectral representation is null. This extends the results for $\mathbb{Z}^d$, and answers a question of P. Roy on discrete nilpotent groups to the extent of all countable amenable groups. As a result we construct on the Heisenberg group and on many Abelian groups, for all $α$ in (0,2), stationary S$α$S processes that are weakly-mixing but not strongly-mixing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源