论文标题
来自脉冲星时数据数据的鲁棒参数估计
Robust parameter estimation from pulsar timing data
论文作者
论文摘要
最近,全局PULSAR定时阵列发布了搜索纳米赫兹重力波背景信号的结果。尽管尚未有任何确定的证据表明在脉冲星时数据的残差中存在这种信号,但将来有更多和改进的数据,但预计将进行统计学上的显着检测。随机算法用于采样非常大的参数空间,以从数据中推断结果。在本文中,我们试图排除由采样器在推理过程中的随机性产生的影响。我们比较了嵌套采样器的不同配置和更常用的马尔可夫链蒙特卡洛方法,用于采样PULSAR时正时阵列参数空间,并说明不同采样器在相同数据上花费的时间。尽管我们从不同采样算法获得参数的一致结果,但我们提出了两个不同的采样器,以便将来对数据进行鲁棒性检查,以说明采样方法之间的交叉检查以及现实的运行时间。
Recently, global pulsar timing arrays have released results from searching for a nano-Hertz gravitational wave background signal. Although there has not been any definite evidence of the presence of such a signal in residuals of pulsar timing data yet, with more and improved data in future, a statistically significant detection is expected to be made. Stochastic algorithms are used to sample a very large parameter space to infer results from data. In this paper, we attempt to rule out effects arising from the stochasticity of the sampler in the inference process. We compare different configurations of nested samplers and the more commonly used markov chain monte carlo method to sample the pulsar timing array parameter space and account for times taken by the different samplers on same data. Although we obtain consistent results on parameters from different sampling algorithms, we propose two different samplers for robustness checks on data in the future to account for cross-checks between sampling methods as well as realistic run-times.