论文标题
对称触发宇宙学中的散装粘性流体:理论与实验
Bulk viscous fluid in symmetric teleparallel cosmology: theory versus experiment
论文作者
论文摘要
在没有宇宙常数的情况下,一般相对论理论的标准表述无法解释观察到的晚期宇宙加速度的负责机制。另一方面,通过将宇宙学常数插入爱因斯坦的场方程中,可以描述宇宙加速度,但是宇宙学常数遭受了前所未有的微调问题。这激发了人们修改爱因斯坦的一般相对性时空几何形状。 $ f(q)$修改的重力理论是一般相对论的替代理论,其中非金属标量$ q $是重力相互作用的负责人。在目前的工作中,我们考虑了弗里德曼·莱姆·罗伯逊 - 罗伯逊步行者的宇宙学模型,由$ f(q)$重力构成的散装粘性宇宙流体,其功能形式$ f(q)=αq^n $,其中$α$和$α$和$ n $是该模型的免费参数。我们以1048个数据点的最新万神殿超新星数据集,31个数据点的哈勃数据集和Baryon声学振荡数据集约束模型,该数据集由6点组成。对于更高的红移值,很明显,$ f(q)$宇宙学比标准宇宙学更合适。我们用红移介绍了减速参数的演变,并正确预测了从减速到宇宙扩展的加速阶段的过渡。同样,我们介绍了密度,块状粘性压力和与红移的有效状态参数方程的演变。这些表明,宇宙流体中的散装粘度是有效驱动宇宙扩张的负压有效的有效候选。此外,还研究了状态基诊断,以区分不同的暗能量模型。
The standard formulation of General Relativity Theory, in the absence of a cosmological constant, is unable to explain the responsible mechanism for the observed late-time cosmic acceleration. On the other hand, by inserting the cosmological constant in Einstein's field equations it is possible to describe the cosmic acceleration, but the cosmological constant suffers from an unprecedented fine-tunning problem. This motivates one to modify Einstein's space-time geometry of General Relativity. The $f(Q)$ modified theory of gravity is an alternative theory to General Relativity, where the non-metricity scalar $Q$ is the responsible candidate for gravitational interactions. In the present work we consider a Friedmann-Lemâitre-Robertson-Walker cosmological model dominated by bulk viscous cosmic fluid in $f(Q)$ gravity with the functional form $f(Q)=αQ^n$, where $α$ and $n$ are free parameters of the model. We constrain our model with the recent Pantheon supernovae data set of 1048 data points, Hubble data set of 31 data points and baryon acoustic oscillations data set consisting of six points. For higher values of redshift, it is clear that the $f(Q)$ cosmology better fits data than standard cosmology. We present the evolution of our deceleration parameter with redshift and it properly predicts a transition from decelerated to accelerated phases of the universe expansion. Also, we present the evolution of density, bulk viscous pressure and the effective equation of state parameter with redshift. Those show that bulk viscosity in a cosmic fluid is a valid candidate to acquire the negative pressure to drive the cosmic expansion efficiently.We also examine the behavior of different energy conditions to test the viability of our cosmological $f(Q)$ model. Furthermore, the statefinder diagnostics are also investigated in order to distinguish among different dark energy models.