论文标题

基于动态学习图卷积机制的时空短期交通流预测模型

A spatial-temporal short-term traffic flow prediction model based on dynamical-learning graph convolution mechanism

论文作者

Chen, Zhijun, Lu, Zhe, Chen, Qiushi, Zhong, Hongliang, Zhang, Yishi, Xue, Jie, Wu, Chaozhong

论文摘要

短期交通流量预测是智能交通系统(ITS)的重要分支,在交通管理中起着重要作用。图形卷积网络(GCN)被广泛用于流量预测模型,以更好地处理道路网络的图形结构数据。但是,不同路段之间的影响力通常在现实生活中是不同的,并且很难手动分析。传统的GCN机制依赖于手动设定的邻接矩阵,在训练过程中无法动态学习这种空间模式。为了解决这一缺点,本文提出了一个新颖的位置图卷积网络(位置-GCN)。 Location-GCN使用该矩阵的绝对值来代表不同节点之间的独特影响水平,从而在GCN机制中添加新的可学习矩阵来解决此问题。然后,在建议的流量预测模型中采用了长期短期内存(LSTM)。此外,本研究中使用了三角函数编码,以使短期输入序列能够传达长期的周期信息。最终,将提出的模型与基线模型进行了比较,并在两个真实的流量流数据集上进行了评估。结果表明,与其他代表性流量预测模型相比,这两个数据集的模型在两个数据集上更加准确,强大。

Short-term traffic flow prediction is a vital branch of the Intelligent Traffic System (ITS) and plays an important role in traffic management. Graph convolution network (GCN) is widely used in traffic prediction models to better deal with the graphical structure data of road networks. However, the influence weights among different road sections are usually distinct in real life, and hard to be manually analyzed. Traditional GCN mechanism, relying on manually-set adjacency matrix, is unable to dynamically learn such spatial pattern during the training. To deal with this drawback, this paper proposes a novel location graph convolutional network (Location-GCN). Location-GCN solves this problem by adding a new learnable matrix into the GCN mechanism, using the absolute value of this matrix to represent the distinct influence levels among different nodes. Then, long short-term memory (LSTM) is employed in the proposed traffic prediction model. Moreover, Trigonometric function encoding is used in this study to enable the short-term input sequence to convey the long-term periodical information. Ultimately, the proposed model is compared with the baseline models and evaluated on two real word traffic flow datasets. The results show our model is more accurate and robust on both datasets than other representative traffic prediction models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源