论文标题
弥合差距:基于runge-kutta共振方案中的符合性和较低的规律性
Bridging the gap: symplecticity and low regularity in Runge-Kutta resonance-based schemes
论文作者
论文摘要
近年来,越来越多的研究致力于开发用于分散非线性偏微分方程的所谓共振方法。在许多情况下,这种新类别的方法允许在更通用的设置(例如粗略数据)中进行近似值,例如经典的拆分或指数积分方法。但是,它们缺乏一种重要的特性:流量的几何特性的保存。对于Korteweg -de Vries(KDV)方程和非线性Schrödinger方程(NLSE)而言,这尤其激烈,它们是分散无限二维的汉密尔顿系统的基本模型,这些模型是无限地具有许多保守量的重要属性,我们希望捕获某些级别的级别 - 在某些级别上 - 在某些级别上 - 在某些级别上 - 在某些级别上 - 在某些级别上 - 在某些级别上 - 在某些级别上 - 在某些级别上。如今,可以使用多种用于哈密顿系统的结构积分器,但是,通常这些现有算法只能有效地近似高度规则的解决方案。另一方面,最先进的低常规积分子可以保留基础PDE的几何结构。在这项工作中,我们介绍了一个新型的框架,所谓的runge-kutta共振方法,用于大量的分散非线性方程,该方程纳入了比先前基于共振的方案更大的自由度,同时具有类似的有利的低调融合性能。特别是,对于KDV和NLSE案例,我们能够通过表征基于两个方程式的基于基于共鸣的共鸣的方法来弥合低规律性和结构保存之间的差距,从而可以使解决方案近似近似近似,同时保留了持续存在的离散级别的持续数量结构。
Recent years have seen an increasing amount of research devoted to the development of so-called resonance-based methods for dispersive nonlinear partial differential equations. In many situations, this new class of methods allows for approximations in a much more general setting (e.g. for rough data) than, for instance, classical splitting or exponential integrator methods. However, they lack one important property: the preservation of geometric properties of the flow. This is particularly drastic in the case of the Korteweg-de Vries (KdV) equation and the nonlinear Schrödinger equation (NLSE) which are fundamental models in the broad field of dispersive infinite-dimensional Hamiltonian systems, possessing infinitely many conserved quantities, an important property which we wish to capture - at least up to some degree - also on the discrete level. Nowadays, a wide range of structure preserving integrators for Hamiltonian systems are available, however, typically these existing algorithms can only approximate highly regular solutions efficiently. State-of-the-art low-regularity integrators, on the other hand, poorly preserve the geometric structure of the underlying PDE. In this work we introduce a novel framework, so-called Runge-Kutta resonance-based methods, for a large class of dispersive nonlinear equations which incorporate a much larger amount of degrees of freedom than prior resonance-based schemes while featuring similarly favourable low-regularity convergence properties. In particular, for the KdV and NLSE case, we are able to bridge the gap between low regularity and structure preservation by characterising a large class of symplectic (in the Hamiltonian picture) resonance-based methods for both equations that allow for low-regularity approximations to the solution while preserving the underlying geometric structure of the continuous problem on the discrete level.