论文标题

随机突触的高吞吐量生成矢量自动收入模型

A High Throughput Generative Vector Autoregression Model for Stochastic Synapses

论文作者

Hennen, T., Elias, A., Nodin, J. F., Molas, G., Waser, R., Wouters, D. J., Bedau, D.

论文摘要

通过模仿大脑的突触连通性和可塑性,新兴的电子纳米构造为神经形态系统的基础提供了新的机会。基于新兴设备的计算体系结构的大量模拟的一个挑战是准确捕获设备响应,磁滞,噪声和时间域中的协方差结构,以及不同设备参数之间的协方差。我们使用高吞吐量生成模型来解决突触阵列的高吞吐量生成模型,该模型基于最近可用的电阻存储单元的电气测量数据类型。我们将此现实世界数据映射到矢量自回归随机过程中,以准确地重现设备参数及其互相关结构。尽管与测量数据紧密匹配,但我们的模型仍然非常快。我们为CPU和GPU提供并行化的实现,并将阵列大小超过10亿个单元格,并且吞吐量超过每秒超过一亿重量更新,高于30帧/S 4K视频流的像素速率。

By imitating the synaptic connectivity and plasticity of the brain, emerging electronic nanodevices offer new opportunities as the building blocks of neuromorphic systems. One challenge for largescale simulations of computational architectures based on emerging devices is to accurately capture device response, hysteresis, noise, and the covariance structure in the temporal domain as well as between the different device parameters. We address this challenge with a high throughput generative model for synaptic arrays that is based on a recently available type of electrical measurement data for resistive memory cells. We map this real world data onto a vector autoregressive stochastic process to accurately reproduce the device parameters and their cross-correlation structure. While closely matching the measured data, our model is still very fast; we provide parallelized implementations for both CPUs and GPUs and demonstrate array sizes above one billion cells and throughputs exceeding one hundred million weight updates per second, above the pixel rate of a 30 frames/s 4K video stream.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源