论文标题
贝叶斯先前通过神经网络学习,以获取下一项推荐
Bayesian Prior Learning via Neural Networks for Next-item Recommendation
论文作者
论文摘要
Next-项目预测是推荐系统域中的一个流行问题。顾名思义,任务是建议用户对给定上下文信息和历史互动数据感兴趣的后续项目。在我们的论文中,我们通过一系列项目交互对上下文的一般概念进行建模。我们使用贝叶斯框架对下一个项目预测问题进行建模,并通过β分布的后均值捕获序列的外观概率。我们训练两个神经网络,以准确预测β分布的alpha&beta参数值。我们结合黑盒风格神经网络的新方法,已知适合使用贝叶斯估计方法近似功能近似,这导致了一种创新的方法,该方法表现优于各种最新的基线。我们在两个现实世界数据集中证明了我们方法的有效性。我们的框架是朝着建立隐私保留推荐系统的目标的重要一步。
Next-item prediction is a a popular problem in the recommender systems domain. As the name suggests, the task is to recommend subsequent items that a user would be interested in given contextual information and historical interaction data. In our paper, we model a general notion of context via a sequence of item interactions. We model the next item prediction problem using the Bayesian framework and capture the probability of appearance of a sequence through the posterior mean of the Beta distribution. We train two neural networks to accurately predict the alpha & beta parameter values of the Beta distribution. Our novel approach of combining black-box style neural networks, known to be suitable for function approximation with Bayesian estimation methods have resulted in an innovative method that outperforms various state-of-the-art baselines. We demonstrate the effectiveness of our method in two real world datasets. Our framework is an important step towards the goal of building privacy preserving recommender systems.