论文标题
通过边界框监督显着对象检测
Salient Object Detection via Bounding-box Supervision
论文作者
论文摘要
完全监督的显着性检测模型的成功取决于大量像素标签。在本文中,我们致力于基于边界盒的弱监督显着性检测,以减轻标签工作。鉴于边界框注释,我们观察到边界框内的像素可能包含广泛的标签噪声。但是,由于排除了大量背景,前景边界区域包含一个不太复杂的背景,因此仅使用裁切的前景区域进行基于手工特征的显着性检测是可能的。由于传统的手工特征不够代表性,导致嘈杂的显着图,因此我们进一步引入了结构感知的自我监督损失,以正规化预测的结构。此外,我们声称边界框外的像素应为背景,因此可以使用部分跨透明损失函数来准确定位准确的背景区域。六个基准RGB显着数据集的实验结果说明了我们模型的有效性。
The success of fully supervised saliency detection models depends on a large number of pixel-wise labeling. In this paper, we work on bounding-box based weakly-supervised saliency detection to relieve the labeling effort. Given the bounding box annotation, we observe that pixels inside the bounding box may contain extensive labeling noise. However, as a large amount of background is excluded, the foreground bounding box region contains a less complex background, making it possible to perform handcrafted features-based saliency detection with only the cropped foreground region. As the conventional handcrafted features are not representative enough, leading to noisy saliency maps, we further introduce structure-aware self-supervised loss to regularize the structure of the prediction. Further, we claim that pixels outside the bounding box should be background, thus partial cross-entropy loss function can be used to accurately localize the accurate background region. Experimental results on six benchmark RGB saliency datasets illustrate the effectiveness of our model.