论文标题
用于量子波包的台球悖论
Billiard-ball paradox for a quantum wave packet
论文作者
论文摘要
过去对台球悖论的研究是一个问题,涉及一个对象,该物体沿着封闭的时机曲线(CTC)回到时代,通常与完全古典的历史有关,因此与量子力学相关的任何轨迹效应都无法体现。在这里,我们开发了悖论的量子版本,其中一个(半经典的)波数据包通过包含虫洞时间机的区域演变。这是通过将所有相关路径映射到量子电路来实现的,在该量子电路中,通过以时钟状态代表台球粒子来促进各种路径的区别。对于此模型,我们发现Deutsch的处方(D-CTC)以由术语组成的混合状态的形式提供了自洽的解决方案,该术语代表了通过电路对粒子演化的所有可能配置。在等效电路图片(ECP)中,这将减少到时间机循环数量中的二项式分布。另一方面,后选择的传送处方(P-CTC)预测了一个纯种解决方案,其中循环计数具有二项式系数权重。然后,我们在连续限制中讨论模型,特别关注人们可以采用的各种方法,以确保平均时钟演变数量的收敛。具体而言,对于D-CTC,我们发现有必要正规化理论参数,而P-CTC则需要更加人为的修改。
Past studies of the billiard-ball paradox, a problem involving an object that travels back in time along a closed timelike curve (CTC), typically concern themselves with entirely classical histories, whereby any trajectorial effects associated with quantum mechanics cannot manifest. Here we develop a quantum version of the paradox, wherein a (semiclassical) wave packet evolves through a region containing a wormhole time machine. This is accomplished by mapping all relevant paths on to a quantum circuit, in which the distinction of the various paths is facilitated by representing the billiard particle with a clock state. For this model, we find that Deutsch's prescription (D-CTCs) provides self-consistent solutions in the form of a mixed state composed of terms which represent every possible configuration of the particle's evolution through the circuit. In the equivalent circuit picture (ECP), this reduces to a binomial distribution in the number of loops of time machine. The postselected teleportation prescription (P-CTCs) on the other hand predicts a pure-state solution in which the loop counts have binomial coefficient weights. We then discuss the model in the continuum limit, with a particular focus on the various methods one may employ in order to guarantee convergence in the average number of clock evolutions. Specifically, for D-CTCs, we find that it is necessary to regularise the theory's parameters, while P-CTCs alternatively require more contrived modification.