论文标题
向化学家推荐研究论文:化学实体探索的专业界面
Recommending Research Papers to Chemists: A Specialized Interface for Chemical Entity Exploration
论文作者
论文摘要
研究人员和科学家越来越依靠专门的信息检索(IR)或推荐系统(RS)来支持他们的日常研究任务。纸质推荐系统是科学家用来保持其领域不断增加的学术出版物的一种工具。改进的研究论文推荐系统是一个积极的研究领域。但是,较少的研究集中在研究论文推荐系统的界面如何量身定制以适应不同研究领域的需求。例如,在生物医学和化学领域,研究人员不仅对文本相关性感兴趣,而且还可能想发现或比较论文全文中发现的包含的化学实体信息。现有的学术文献推荐系统不支持发现这种非文本,但具有语义上有价值的化学实体数据。我们介绍了能够可视化文档全文中化合物的化学结构,化学公式和同义词的专业化学纸推荐系统的首次实施。在描述Chemvis系统的实施之前,我们会回顾该领域的现有工具和相关研究。在化学家的帮助下,我们正在扩大Chemvis的功能,并将评估未来工作中的建议性能和可用性。
Researchers and scientists increasingly rely on specialized information retrieval (IR) or recommendation systems (RS) to support them in their daily research tasks. Paper recommender systems are one such tool scientists use to stay on top of the ever-increasing number of academic publications in their field. Improving research paper recommender systems is an active research field. However, less research has focused on how the interfaces of research paper recommender systems can be tailored to suit the needs of different research domains. For example, in the field of biomedicine and chemistry, researchers are not only interested in textual relevance but may also want to discover or compare the contained chemical entity information found in a paper's full text. Existing recommender systems for academic literature do not support the discovery of this non-textual, but semantically valuable, chemical entity data. We present the first implementation of a specialized chemistry paper recommender system capable of visualizing the contained chemical structures, chemical formulae, and synonyms for chemical compounds within the document's full text. We review existing tools and related research in this field before describing the implementation of our ChemVis system. With the help of chemists, we are expanding the functionality of ChemVis, and will perform an evaluation of recommendation performance and usability in future work.