论文标题
RIS辅助下行链路中的频道估计大量MIMO:一种基于学习的方法
Channel Estimation in RIS-assisted Downlink Massive MIMO: A Learning-Based Approach
论文作者
论文摘要
对于在时间划分双面协议中运行的下行链路大规模多输入多输出(MIMO),只要通道硬化存储,用户就可以通过使用通道统计信息来有效地解码信号。但是,在可重新配置的智能表面(RIS)辅助大规模的MIMO系统中,由于有效通道增长的额外随机波动,传播通道可能会降低。为了解决这个问题,我们提出了一种基于学习的方法,该方法训练神经网络以学习接收到的下行链路信号与有效频道增长之间的映射。提出的方法不需要任何下行链路飞行员和干扰用户的统计信息。数值结果表明,就通道估计的均方误差而言,我们提出的基于学习的方法优于最先进的方法,尤其是当远处(LOS)路径以低水平通道硬化的非LOS路径为主导时,例如,在较低的通道硬化中,例如,在RIS元件和/或基本站元件和/或基地元件和/或基地元件的情况下。
For downlink massive multiple-input multiple-output (MIMO) operating in time-division duplex protocol, users can decode the signals effectively by only utilizing the channel statistics as long as channel hardening holds. However, in a reconfigurable intelligent surface (RIS)-assisted massive MIMO system, the propagation channels may be less hardened due to the extra random fluctuations of the effective channel gains. To address this issue, we propose a learning-based method that trains a neural network to learn a mapping between the received downlink signal and the effective channel gains. The proposed method does not require any downlink pilots and statistical information of interfering users. Numerical results show that, in terms of mean-square error of the channel estimation, our proposed learning-based method outperforms the state-of-the-art methods, especially when the light-of-sight (LoS) paths are dominated by non-LoS paths with a low level of channel hardening, e.g., in the cases of small numbers of RIS elements and/or base station antennas.