论文标题

通过不确定性量化的加密网络流量应用程序标签的可扩展机器学习

Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification

论文作者

Jorgensen, Steven, Holodnak, John, Dempsey, Jensen, de Souza, Karla, Raghunath, Ananditha, Rivet, Vernon, DeMoes, Noah, Alejos, Andrés, Wollaber, Allan

论文摘要

随着加密网络流量的越来越多,网络安全分析师一直在转向机器学习(ML)技术,以阐明其网络上的流量。但是,随着新的流量出现,ML模型可能会变得陈旧,而培训集的分布不在。为了可靠地适应这个动态环境,ML模型必须另外为其预测提供上下文化的不确定性量化,这在网络安全域中很少关注。不确定性量化是必要的,既需要在模型中不确定在标签分配中选择哪个类别以及流量不太可能属于任何预训练的类别的何时。 我们提供了一个新的公共数据集网络流量数据集,其中包括标记为虚拟专用网络(VPN)加密的网络流量,该网络流量由10个应用程序生成,并与5个应用程序类别相对应。我们还提出了一个ML框架,该框架旨在快速训练具有适度的数据要求,并提供校准的,预测的概率以及可解释的“分数过失”(OOD)得分(以标记新型流量样本)。我们使用相对Mahalanobis距离的P值描述了OOD得分。 我们证明我们的框架在我们的数据集上达到了0.98的F1分数,并且可以通过测试模型扩展到企业网络:(1)(1)对来自类似应用程序的数据,(2)对现有类别的相似应用程序流量以及(3)对新类别的应用程序流量的不同。该模型正确标记不确定的流量,并在重新训练后准确地合并了新数据。

With the increasing prevalence of encrypted network traffic, cyber security analysts have been turning to machine learning (ML) techniques to elucidate the traffic on their networks. However, ML models can become stale as new traffic emerges that is outside of the distribution of the training set. In order to reliably adapt in this dynamic environment, ML models must additionally provide contextualized uncertainty quantification to their predictions, which has received little attention in the cyber security domain. Uncertainty quantification is necessary both to signal when the model is uncertain about which class to choose in its label assignment and when the traffic is not likely to belong to any pre-trained classes. We present a new, public dataset of network traffic that includes labeled, Virtual Private Network (VPN)-encrypted network traffic generated by 10 applications and corresponding to 5 application categories. We also present an ML framework that is designed to rapidly train with modest data requirements and provide both calibrated, predictive probabilities as well as an interpretable "out-of-distribution" (OOD) score to flag novel traffic samples. We describe calibrating OOD scores using p-values of the relative Mahalanobis distance. We demonstrate that our framework achieves an F1 score of 0.98 on our dataset and that it can extend to an enterprise network by testing the model: (1) on data from similar applications, (2) on dissimilar application traffic from an existing category, and (3) on application traffic from a new category. The model correctly flags uncertain traffic and, upon retraining, accurately incorporates the new data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源