论文标题
二次公制理论的矢量稳定性
Vector stability in quadratic metric-affine theories
论文作者
论文摘要
在这项工作中,我们研究了四个维度的四个二次度量公制拉格朗日式中四个矢量不可约的扭曲碎片和非赞誉张量的稳定性。目的是阐明在哪些条件下,与此类向量相关的自旋1模式可以安全地与重力一起传播。这高度限制了将二次曲率部分的参数空间从16个参数降低到5个参数的理论。我们还研究了Weyl-cartan重力的子案例,证明了载体部门的稳定性仅与Weyl Vector的Einstein-Proca理论兼容。
In this work we study the stability of the four vector irreducible pieces of the torsion and the nonmetricity tensors in the general quadratic metric-affine Lagrangian in 4 dimensions. The goal will be to elucidate under which conditions the spin-1 modes associated to such vectors can propagate in a safe way, together with the graviton. This highly constrains the theory reducing the parameter space of the quadratic curvature part from 16 to 5 parameters. We also study the sub-case of Weyl-Cartan gravity, proving that the stability of the vector sector is only compatible with an Einstein-Proca theory for the Weyl vector.