论文标题

微小的机器人学习:资源受限机器人中机器学习的挑战和方向

Tiny Robot Learning: Challenges and Directions for Machine Learning in Resource-Constrained Robots

论文作者

Neuman, Sabrina M., Plancher, Brian, Duisterhof, Bardienus P., Krishnan, Srivatsan, Banbury, Colby, Mazumder, Mark, Prakash, Shvetank, Jabbour, Jason, Faust, Aleksandra, de Croon, Guido C. H. E., Reddi, Vijay Janapa

论文摘要

机器学习(ML)已成为跨计算系统的普遍工具。强调ML系统设计挑战的新兴应用程序是机器人学习,这是ML在资源受限的低成本自主机器人上的部署。微小的机器人学习在于嵌入式系统,机器人技术和ML的交集,使这些领域的挑战更加复杂。微小的机器人学习受到大小,重量,区域和功率(交换)约束的挑战;传感器,执行器和计算硬件限制;端到端系统权衡;以及大量可能的部署方案。 Tiny机器人学习需要考虑到这些挑战的设计ML模型,这提供了一种坩埚,揭示了整体ML系统设计的必要性和自动化的端到端设计工具,以敏捷开发。本文简要介绍了微小的机器人学习空间,详细阐述了关键挑战,并为ML系统设计中的未来工作提供了有希望的机会。

Machine learning (ML) has become a pervasive tool across computing systems. An emerging application that stress-tests the challenges of ML system design is tiny robot learning, the deployment of ML on resource-constrained low-cost autonomous robots. Tiny robot learning lies at the intersection of embedded systems, robotics, and ML, compounding the challenges of these domains. Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints; sensor, actuator, and compute hardware limitations; end-to-end system tradeoffs; and a large diversity of possible deployment scenarios. Tiny robot learning requires ML models to be designed with these challenges in mind, providing a crucible that reveals the necessity of holistic ML system design and automated end-to-end design tools for agile development. This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源