论文标题

个人公平保证神经网络

Individual Fairness Guarantees for Neural Networks

论文作者

Benussi, Elias, Patane, Andrea, Wicker, Matthew, Laurenti, Luca, Kwiatkowska, Marta

论文摘要

我们考虑证明馈送前传神经网络(NNS)的个人公平性(如果)的问题。特别是,我们与$ε$ - $δ$ - 如果配方,鉴于NN和从数据中学到的相似性度量,要求任何对$ε$ -Siminal的个人之间的输出差。使用一系列指标(包括马哈拉氏症距离),我们提出了一种使用分段线性函数过度陈述产生的优化问题的方法,以在输入空间上降低NN的NN非线性。我们将该计算编码为混合企业线性编程问题的解决方案,并证明如果在四个数据集中保证了广泛用于公平基准测试的数据集,则可以使用它来计算。我们展示了如何通过修改NN损失来鼓励模型在训练时间的公平性,并从经验上证实我们的方法产生的NNS比最先进的方法更公平。

We consider the problem of certifying the individual fairness (IF) of feed-forward neural networks (NNs). In particular, we work with the $ε$-$δ$-IF formulation, which, given a NN and a similarity metric learnt from data, requires that the output difference between any pair of $ε$-similar individuals is bounded by a maximum decision tolerance $δ\geq 0$. Working with a range of metrics, including the Mahalanobis distance, we propose a method to overapproximate the resulting optimisation problem using piecewise-linear functions to lower and upper bound the NN's non-linearities globally over the input space. We encode this computation as the solution of a Mixed-Integer Linear Programming problem and demonstrate that it can be used to compute IF guarantees on four datasets widely used for fairness benchmarking. We show how this formulation can be used to encourage models' fairness at training time by modifying the NN loss, and empirically confirm our approach yields NNs that are orders of magnitude fairer than state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源