论文标题
同质Triebel-Lizorkin和Besov-Lipschitz空间的不平等现象
Inequalities In Homogeneous Triebel-Lizorkin And Besov-Lipschitz Spaces
论文作者
论文摘要
本文提供了同质triebel-lizorkin和besov-lipschitz空间的等效特征,并由$ \ dot {f}^s_ {p,q}(\ m mathbb {r}^n)$和$ \ dot {迭代差异的平均值的函数。它还为读者提供了$ \ dot {f}^s_ {p,q}(\ mathbb {r}^n)$中的不平等,以迭代的差异和沿坐标轴的迭代差异表示。还考虑了$ \ dot {b}^s_ {p,q}(\ mathbb {r}^n)$中的相应不等式,以迭代的差异和在沿坐标轴的迭代差方面。本文中使用的技术具有傅立叶分析性质,而耐铁的木材和peetre-fifferman-stein最大功能。
This paper provides equivalence characterizations of homogeneous Triebel-Lizorkin and Besov-Lipschitz spaces, denoted by $\dot{F}^s_{p,q}(\mathbb{R}^n)$ and $\dot{B}^s_{p,q}(\mathbb{R}^n)$ respectively, in terms of maximal functions of the mean values of iterated difference. It also furnishes the reader with inequalities in $\dot{F}^s_{p,q}(\mathbb{R}^n)$ in terms of iterated difference and in terms of iterated difference along coordinate axes. The corresponding inequalities in $\dot{B}^s_{p,q}(\mathbb{R}^n)$ in terms of iterated difference and in terms of iterated difference along coordinate axes are also considered. The techniques used in this paper are of Fourier analytic nature and the Hardy-Littlewood and Peetre-Fefferman-Stein maximal functions.