论文标题
理性Cherednik代数的扩展和广义KZ函子
Extensions of the rational Cherednik algebra and generalized KZ functors
论文作者
论文摘要
Ginzburg,Guay,Opdam和Rouquier为合理的Cherednik代数的类别$ \ Mathcal {O} $之间的类别建立了等效性,以及合理的Cherednik代数与复杂反射组的Hecke代数的有限尺寸模块类别。我们建立了两个结果的概括。一方面,与反射亚组的正常化者相关的Hecke代数的扩展,另一方面是通过晶格扩展到Hecke代数的延伸。
Ginzburg, Guay, Opdam and Rouquier established an equivalence of categories between a quotient category of the category $\mathcal{O}$ for the rational Cherednik algebra and the category of finite dimension modules of the Hecke algebra of a complex reflection group $W$. We establish two generalizations of this result. On the one hand to the extension of the Hecke algebra associated to the normaliser of a reflection subgroup and on the other hand to the extension of the Hecke algebra by a lattice.