论文标题
在$ \ mathbb {z} $上随机环境中随机步行的弹道性带有有限跳跃
Ballisticity of Random walks in Random Environments on $\mathbb{Z}$ with Bounded Jumps
论文作者
论文摘要
我们表征了一般I.I.D.的弹道行为。在$ \ mathbb {z} $上随机环境中随机步行,并带有有限跳跃。我们提供的两个特征不使用均匀的椭圆度条件。它们是自然的,因为它们都与最近邻居案例中的限制速度有关。 注意:本文复制了一些版本的预印本“在$ \ mathbb {z} $的dirichlet随机环境中随机步行,并带有有限的跳跃”。 (ARXIV:2104.14950)。目前的论文是出于长度的原因而被拆分的,计划是从以前的论文的未来版本中删除这些结果,并用引用当前的预印本替换它们。
We characterize ballistic behavior for general i.i.d. random walks in random environments on $\mathbb{Z}$ with bounded jumps. The two characterizations we provide do not use uniform ellipticity conditions. They are natural in the sense that they both relate to formulas for the limiting speed in the nearest-neighbor case. Note: This paper duplicates results from some versions of the preprint "Random walks in Dirichlet random environments on $\mathbb{Z}$ with bounded jumps." (arxiv: 2104.14950). The present paper is being split off for reasons of length, and the plan is to remove these results from a future version of the previous paper and replace them with a citation of the present preprint.