论文标题

电子杂货零售业的动态随机库存管理

Dynamic Stochastic Inventory Management in E-Grocery Retailing

论文作者

Winkelmann, David, Ulrich, Matthias, Römer, Michael, Langrock, Roland, Jahnke, Hermann

论文摘要

电子杂货零售使在线订购产品可以在客户选择的未来时间插槽中交付。这个新兴的业务领域为零售商提供了庞大而全面的新数据集,但为库存管理过程构成了一些挑战。例如,单一物品的库存风险导致购物过程完全取消购物过程的风险要高于传统商店零售。结果,零售商的目标是提供非常高的服务水平目标,以提供令人满意的客户服务并确保长期业务增长。在确定补给订单数量时,对于准确解释库存过程中的全部不确定性至关重要。这需要(1)估算合适的潜在概率分布的预测性和规范性分析,以表示由非平稳的客户需求,货架生活和供应引起的不确定性,以及(2)将这些预测集成到一个全面的多物体优化框架中。在本文中,我们通过顺序决策过程对这个随机动态问题进行建模,该过程使我们避免简化文献中常见的假设,例如关注单个需求期。由于最终的问题通常会在分析上棘手,因此我们提出了一项随机lookahead策略,该策略结合了蒙特卡洛技术,以充分传播相关的不确定性,以得出补充订单数量。该策略自然地集成了概率预测,并使我们能够明确得出与基于仿真的设置中的近视或确定性方法相比,概率信息的价值。此外,我们在基于实际数据的案例研究中评估了我们的政策,其中从历史数据和解释变量中估算了潜在的概率分布。

E-grocery retailing enables ordering products online to be delivered at a future time slot chosen by the customer. This emerging field of business provides retailers with large and comprehensive new data sets, yet creates several challenges for the inventory management process. For example, the risk of a single item's stock-out leading to a complete cancellation of the shopping process is higher in e-grocery than in traditional store retailing. As a consequence, retailers aim at very high service level targets to provide satisfactory customer service and to ensure long-term business growth. When determining replenishment order quantities, it is of crucial importance to precisely account for the full uncertainty in the inventory process. This requires predictive and prescriptive analytics to (1) estimate suitable underlying probability distributions to represent the uncertainty caused by non-stationary customer demand, shelf lives, and supply, and to (2) integrate those forecasts into a comprehensive multi-period optimisation framework. In this paper, we model this stochastic dynamic problem by a sequential decision process that allows us to avoid simplifying assumptions commonly made in the literature, such as the focus on a single demand period. As the resulting problem will typically be analytically intractable, we propose a stochastic lookahead policy incorporating Monte Carlo techniques to fully propagate the associated uncertainties in order to derive replenishment order quantities. This policy naturally integrates probabilistic forecasts and allows us to explicitly derive the value of accounting for probabilistic information compared to myopic or deterministic approaches in a simulation-based setting. In addition, we evaluate our policy in a case study based on real-world data where underlying probability distributions are estimated from historical data and explanatory variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源