论文标题
数据驱动控制的强大基本引理
Robust Fundamental Lemma for Data-driven Control
论文作者
论文摘要
Willems and Interors的基本引理促进了按照单个,测量的轨迹的参数化。该结果在数据驱动的模拟和控制中起着重要作用。在引擎盖下,基本的引理通过对系统应用持续令人兴奋的意见来起作用。这确保了结果输入/输出数据的Hankel矩阵具有“正确”等级,这意味着其列涵盖了整个轨迹的子空间。但是,这种二进制等级条件在某种意义上是脆弱的,因为小小的添加噪声可能已经导致汉克尔矩阵具有完整的等级。因此,在这个扩展的摘要中,我们提出了基本引理的强大版本。该方法背后的想法是确保数据hankel矩阵的单数值的某些下限,而不是单纯的等级条件。这是通过设计实验的输入来实现的,使得更深的输入汉克尔基质的最小值足够大。这激发了一种新的定量和强大的激发持续性概念。通过比较不同程度持续令人兴奋的数据的预测控制性能,还将突出显示结果与数据驱动控制的相关性。
The fundamental lemma by Willems and coauthors facilitates a parameterization of all trajectories of a linear time-invariant system in terms of a single, measured one. This result plays an important role in data-driven simulation and control. Under the hood, the fundamental lemma works by applying a persistently exciting input to the system. This ensures that the Hankel matrix of resulting input/output data has the "right" rank, meaning that its columns span the entire subspace of trajectories. However, such binary rank conditions are known to be fragile in the sense that a small additive noise could already cause the Hankel matrix to have full rank. Therefore, in this extended abstract we present a robust version of the fundamental lemma. The idea behind the approach is to guarantee certain lower bounds on the singular values of the data Hankel matrix, rather than mere rank conditions. This is achieved by designing the inputs of the experiment such that the minimum singular value of a deeper input Hankel matrix is sufficiently large. This inspires a new quantitative and robust notion of persistency of excitation. The relevance of the result for data-driven control will also be highlighted through comparing the predictive control performance for varying degrees of persistently exciting data.