论文标题
拉格朗日色散在各向异性磁流体动力湍流的直接数值模拟中的雷诺数依赖性
Reynolds number dependence of Lagrangian dispersion in direct numerical simulations of anisotropic magnetohydrodynamic turbulence
论文作者
论文摘要
大规模磁场穿过星际和星际介质,恒星内部和其他天体物理等离子体的电气导电物质,产生各向异性流动,并具有高雷诺兹 - 空的湍流区域。通常会遇到由强度大致等于根平方磁波动的磁场结构的湍流。在这项工作中,针对具有相同分辨率的一系列情况,并将网格大小提高到2048^3 $的一系列情况,对受这种磁场影响的各向异性磁流失动力(MHD)的湍流进行了直接数值模拟。结果是雷诺数的一系列可比较的模拟,范围从1,400至21,000。我们通过跟踪流体颗粒并计算单粒子和两粒子统计来研究雷诺数的影响。讨论了藻类波动和基本各向异性对这些统计数据中MHD湍流的影响。单粒子扩散曲线表现出轻度的超级延伸行为,这些行为在与磁场和垂直于磁场的方向排列的方向上有所不同。竞争对准过程会影响粒子对的分散,特别是在时间尺度的惯性子范围的开头。可以观察到比Richardson预测更陡的相对分散体的尺度,在较大的雷诺数的惯性子范围内变得更清晰。
Large-scale magnetic fields thread through the electrically conducting matter of the interplanetary and interstellar medium, stellar interiors, and other astrophysical plasmas, producing anisotropic flows with regions of high-Reynolds-number turbulence. It is common to encounter turbulent flows structured by a magnetic field with a strength approximately equal to the root-mean-square magnetic fluctuations. In this work, direct numerical simulations of anisotropic magnetohydrodynamic (MHD) turbulence influenced by such a magnetic field are conducted for a series of cases that have identical resolution, and increasing grid sizes up to $2048^3$. The result is a series of closely comparable simulations at Reynolds numbers ranging from 1,400 up to 21,000. We investigate the influence of the Reynolds number from the Lagrangian viewpoint by tracking fluid particles and calculating single-particle and two-particle statistics. The influence of Alfvénic fluctuations and the fundamental anisotropy on the MHD turbulence in these statistics is discussed. Single-particle diffusion curves exhibit mildly superdiffusive behaviors that differ in the direction aligned with the magnetic field and the direction perpendicular to it. Competing alignment processes affect the dispersion of particle pairs, in particular at the beginning of the inertial subrange of time scales. Scalings for relative dispersion, which become clearer in the inertial subrange for larger Reynolds number, can be observed that are steeper than indicated by the Richardson prediction.