论文标题

神经飞行可以在强风中快速学习敏捷飞行

Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds

论文作者

O'Connell, Michael, Shi, Guanya, Shi, Xichen, Azizzadenesheli, Kamyar, Anandkumar, Anima, Yue, Yisong, Chung, Soon-Jo

论文摘要

在动态的高速风中执行安全,精确的飞行操作对于无人居住的航空车(UAVS)的持续商品化很重要。但是,由于各种风条件之间的关系及其对飞机机动性的影响尚不清楚,因此使用传统的控制设计方法设计有效的机器人控制器是一项挑战。我们提出了一种基于学习的方法,它可以通过深入学习结合预处理的表示,允许快速在线适应。神经苍蝇的建立在两个关键观察结果上,即在不同风条件下空气动力学具有共同的表示,并且特定风的部分在于低维空间。为此,Neural-Fly使用建议的学习算法,域对抗不变的元学习(DAIML),仅使用12分钟的飞行数据来学习共享表示形式。以学习的表示为基础,神经fly使用复合适应定律来更新一组线性系数以混合基础元素。当在CALTECH真实天气风洞产生的挑战性风条件下进行评估,风速高达43.6公里/小时(12.1米/秒),神经飞行可实现精确的飞行控制,并且跟踪误差大大较小,而不是先进的非线性和适应性控制器。除了强烈的经验表现外,神经苍蝇的指数稳定性可带来鲁棒性的保证。最后,我们的控制设计外推到看不见的风条件,被证明对只有板载传感器的室外飞行有效,并且可以跨无人机转移性能降低。

Executing safe and precise flight maneuvers in dynamic high-speed winds is important for the ongoing commoditization of uninhabited aerial vehicles (UAVs). However, because the relationship between various wind conditions and its effect on aircraft maneuverability is not well understood, it is challenging to design effective robot controllers using traditional control design methods. We present Neural-Fly, a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning. Neural-Fly builds on two key observations that aerodynamics in different wind conditions share a common representation and that the wind-specific part lies in a low-dimensional space. To that end, Neural-Fly uses a proposed learning algorithm, domain adversarially invariant meta-learning (DAIML), to learn the shared representation, only using 12 minutes of flight data. With the learned representation as a basis, Neural-Fly then uses a composite adaptation law to update a set of linear coefficients for mixing the basis elements. When evaluated under challenging wind conditions generated with the Caltech Real Weather Wind Tunnel, with wind speeds up to 43.6 kilometers/hour (12.1 meters/second), Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers. In addition to strong empirical performance, the exponential stability of Neural-Fly results in robustness guarantees. Last, our control design extrapolates to unseen wind conditions, is shown to be effective for outdoor flights with only onboard sensors, and can transfer across drones with minimal performance degradation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源