论文标题

具有无限分散体的大维样品协方差矩阵的LSS的CLT

A CLT for the LSS of large dimensional sample covariance matrices with unbounded dispersions

论文作者

Liu, Zhijun, Hu, Jiang, Bai, Zhidong, Song, Haiyan

论文摘要

在本文中,当种群协方差矩阵不统一时,我们建立了大维样品协方差矩阵的线性光谱统计(LSS)的中心极限定理(CLT),这是BAI-SILVERSIN定理(BST)的非平凡扩展(BAI-SILVERSTEIN(BST)(2004)。后者强烈刺激了高维统计数据的发展,尤其是将随机矩阵理论应用于统计。但是,发现人口协方差矩阵的统一界限的假设非常限于BST的应用。本文的目的是删除BST应用程序的阻塞。新的CLT允许尖刺的特征值存在并倾向于无穷大。有趣的是,尖刺特征值或批量特征值或两者中的两个在CLT中的作用。 此外,通过具有各种种群设置的模拟研究来检查结果。然后,将LSS的CLT应用于测试以下假设:协方差矩阵$ \ bsi $等于身份矩阵。为此,得出了替代的可能性比测试(LRT)和Nagao的痕量测试(NT)的渐近分布,我们还提出了在某些替代方案下LRT和NT的渐近力。

In this paper, we establish the central limit theorem (CLT) for linear spectral statistics (LSS) of large-dimensional sample covariance matrix when the population covariance matrices are not uniformly bounded, which is a nontrivial extension of the Bai-Silverstein theorem (BST) (2004). The latter has strongly stimulated the development of high-dimensional statistics, especially the application of random matrix theory to statistics. However, the assumption of uniform boundedness of the population covariance matrices is found strongly limited to the applications of BST. The aim of this paper is to remove the blockages to the applications of BST. The new CLT, allows the spiked eigenvalues to exist and tend to infinity. It is interesting to note that the roles of either spiked eigenvalues or the bulk eigenvalues or both of the two are dominating in the CLT. Moreover, the results are checked by simulation studies with various population settings. The CLT for LSS is then applied for testing the hypothesis that a covariance matrix $ \bSi $ is equal to an identity matrix. For this, the asymptotic distributions for the corrected likelihood ratio test (LRT) and Nagao's trace test (NT) under alternative are derived, and we also propose the asymptotic power of LRT and NT under certain alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源