论文标题
相互影响回归模型
Mutual Influence Regression Model
论文作者
论文摘要
在本文中,我们提出了相互影响回归模型(MIR),以建立参与者的相互影响矩阵与由其相关属性引起的一组相似性矩阵之间的关系。该模型能够通过扩展常用的空间自回归模型,同时允许其随时间变化,来解释互动矩阵的异质结构。为了促进通过MIR进行推断,我们建立参数估计,权重矩阵选择和模型测试。具体而言,我们采用准最大可能性估计方法来估计未知的回归系数,并证明所得估计量在不施加正态性假设并允许相似性矩阵差异的同时渐近地正常。另外,引入了扩展的BIC型标准,用于从相似性矩阵数量的相似性矩阵中选择相关矩阵。为了评估所提出模型的充分性,我们进一步提出了影响矩阵测试,并开发了一种新颖的方法,以获得测试的限制分布。最后,我们扩展了模型以适应内源性重量矩阵,外源协变量以及个体和时间固定效应,以扩大miR的实用性。模拟研究支持我们的理论发现,并提出了一个真实的例子,以说明提出的miR模型的有用性。
In this article, we propose the mutual influence regression model (MIR) to establish the relationship between the mutual influence matrix of actors and a set of similarity matrices induced by their associated attributes. This model is able to explain the heterogeneous structure of the mutual influence matrix by extending the commonly used spatial autoregressive model while allowing it to change with time. To facilitate making inferences with MIR, we establish parameter estimation, weight matrices selection and model testing. Specifically, we employ the quasi-maximum likelihood estimation method to estimate unknown regression coefficients, and demonstrate that the resulting estimator is asymptotically normal without imposing the normality assumption and while allowing the number of similarity matrices to diverge. In addition, an extended BIC-type criterion is introduced for selecting relevant matrices from the divergent number of similarity matrices. To assess the adequacy of the proposed model, we further propose an influence matrix test and develop a novel approach in order to obtain the limiting distribution of the test. Finally, we extend the model to accommodate endogenous weight matrices, exogenous covariates, and both individual and time fixed effects, to broaden the usefulness of MIR. The simulation studies support our theoretical findings, and a real example is presented to illustrate the usefulness of the proposed MIR model.