论文标题
Lifshitz公制各向异性在爱因斯坦 - 普罗卡理论中的演变
Evolution of Lifshitz metric anisotropies in Einstein-Proca theory under the Ricci-DeTurck flow
论文作者
论文摘要
通过从Perelman熵功能开始,并考虑Ricci-deturck流程方程,我们分析了Einstein-Hilbert和Einstein-Proca理论的行为,并以Lifshitz几何形状为流参数的函数。在前一种情况下,我们发现一个一致的固定点,代表平坦的时空,因为流程参数趋于无穷大。后一种理论中的大量矢量场丰富了研究的系统,并且具有与前一种情况相同的速度相同的固定点。几何流程通过度量系数进行了参数化,并表示随着流参数的发展,几何形状的各向异性变化。实际上,Proca场的流量取决于当流程增加时消失的某些系数,从而使这些字段恒定。我们已经能够用正面各向异性全息偶的几何形式来写下不断发展的LIFSHITZ度量解决方案。我们表明,标量曲率和物质对Ricci-deturck流的贡献在固定点与平坦时空几何形状一致的固定点下消失。因此,标态曲率的行为总是增加,沿流动的几何形状均匀。此外,所研究的理论保持了肯定的阳性,但沿Ricci-deturck流量降低了熵功能。
By starting from a Perelman entropy functional and considering the Ricci-DeTurck flow equations we analyze the behaviour of Einstein-Hilbert and Einstein-Proca theories with Lifshitz geometry as functions of a flow parameter. In the former case, we found one consistent fixed point that represents flat space-time as the flow parameter tends to infinity. Massive vector fields in the latter theory enrich the system under study and have the same fixed point achieved at the same rate as in the former case. The geometric flow is parametrized by the metric coefficients and represents a change in anisotropy of the geometry towards an isotropic flat space-time as the flow parameter evolves. Indeed, the flow of the Proca fields depends on certain coefficients that vanish when the flow parameter increases, rendering these fields constant. We have been able to write down the evolving Lifshitz metric solution with positive, but otherwise arbitrary, critical exponents relevant to geometries with spatially anisotropic holographic duals. We show that both the scalar curvature and matter contributions to the Ricci-DeTurck flow vanish under the flow at a fixed point consistent with flat space-time geometry. Thus, the behaviour of the scalar curvature always increases, homogenizing the geometry along the flow. Moreover, the theory under study keeps positive-definite but decreasing the entropy functional along the Ricci-DeTurck flow.