论文标题
Carleman-Roumieu超质形性类别的最佳平坦功能
Optimal flat functions in Carleman-Roumieu ultraholomorphic classes in sectors
论文作者
论文摘要
我们在与一般非quasiantial分析重量序列相关的Carleman-Roumieu超质形性类别中构建最佳平坦功能,并在适当限制的开放扇区定义。提出了一般过程,以获取Borel Map的线性连续扩展运算符,即Borel Map的直接倒置,以在Dyn'kin的意义上进行常规重量序列。最后,我们讨论了一些示例(包括众所周知的$ Q $ -GEVREY案例),其中可以更明确地获得这种最佳的平面功能。
We construct optimal flat functions in Carleman-Roumieu ultraholomorphic classes associated to general strongly nonquasianalytic weight sequences, and defined on sectors of suitably restricted opening. A general procedure is presented in order to obtain linear continuous extension operators, right inverses of the Borel map, for the case of regular weight sequences in the sense of Dyn'kin. Finally, we discuss some examples (including the well-known $q$-Gevrey case) where such optimal flat functions can be obtained in a more explicit way.