论文标题

EFX分配:简化和改进

EFX Allocations: Simplifications and Improvements

论文作者

Akrami, Hannaneh, Alon, Noga, Chaudhury, Bhaskar Ray, Garg, Jugal, Mehlhorn, Kurt, Mehta, Ruta

论文摘要

EFX分配的存在是离散公平划分的基本开放问题。鉴于一组代理和不可分割的商品,目标是确定在从其他代理的捆绑包中删除任何单一商品后,没有代理会羡慕其他代理的存在。由于总体问题是虚幻的,因此在两个方面取得了进展:$(i)$证明存在代理人数量很少时,$(ii)$证明了EFX放松的存在。在本文中,我们改善了这两个方面的结果(其中一种情况下简化)。 我们证明了EFX分配与三种代理的存在,仅限制了一个代理具有MMS可行的估值函数(严格概括了Berger等人引入的可依赖估值功能,该功能涵盖了附加性,预算添加性和单位需求估值功能)。其他代理可能具有任何单调估值功能。与Chaudhury等人的证明相比,我们的证明技术明显简单和短得多。在存在EFX分配的情况下,当有三种具有加性估值功能的代理时,因此更容易访问。 其次,我们考虑了EFX分配的放松,即近似-EFX分配和EFX分配很少(慈善机构)。 Chaudhury等。通过$ o((n/ε)^{\ frac {4} {5}})$ charity的$(1-ε)$ - efx分配的存在,通过建立了与极端组合学中问题的联系。我们改善了他们的结果,并证明了$(1-ε)$ - efx分配了$ \ tilde {o}((n/ε)^{\ frac {1} {2}} {2}})$ charity。实际上,我们的某些技术可用于证明Alon和Krivelevich引入的零和组合学中的问题改善了上限。

The existence of EFX allocations is a fundamental open problem in discrete fair division. Given a set of agents and indivisible goods, the goal is to determine the existence of an allocation where no agent envies another following the removal of any single good from the other agent's bundle. Since the general problem has been illusive, progress is made on two fronts: $(i)$ proving existence when the number of agents is small, $(ii)$ proving existence of relaxations of EFX. In this paper, we improve results on both fronts (and simplify in one of the cases). We prove the existence of EFX allocations with three agents, restricting only one agent to have an MMS-feasible valuation function (a strict generalization of nice-cancelable valuation functions introduced by Berger et al. which subsumes additive, budget-additive and unit demand valuation functions). The other agents may have any monotone valuation functions. Our proof technique is significantly simpler and shorter than the proof by Chaudhury et al. on existence of EFX allocations when there are three agents with additive valuation functions and therefore more accessible. Secondly, we consider relaxations of EFX allocations, namely, approximate-EFX allocations and EFX allocations with few unallocated goods (charity). Chaudhury et al. showed the existence of $(1-ε)$-EFX allocation with $O((n/ε)^{\frac{4}{5}})$ charity by establishing a connection to a problem in extremal combinatorics. We improve their result and prove the existence of $(1-ε)$-EFX allocations with $\tilde{O}((n/ ε)^{\frac{1}{2}})$ charity. In fact, some of our techniques can be used to prove improved upper-bounds on a problem in zero-sum combinatorics introduced by Alon and Krivelevich.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源