论文标题

小学ABELIAN P组的偏斜型

Skew-Morphisms of Elementary Abelian p-Groups

论文作者

Du, Shaofei, Luo, Wenjuan, Yu, Hao, Zhang, Junyang

论文摘要

有限组$ g $的偏差是$ g $上的$ g $修复身份元素的排列$σ$,并且在$ g $上存在整数函数$π$,因此$σ(xy)=σ(x)=σ(x)σ^{π(x)} $ x,y for All $ x,y in g $ in g $。众所周知,$ g $的偏斜$σ$ $ \ langleσ\ rangle $,左代表$ g $的左代表形式为$ g $上的置换组,称为偏斜生产组,称为$σ$。在本文中,研究了有限的亚伯利亚$ p $ - 组的偏斜生产组。获得的一些属性,特征和结构已获得。

A skew-morphism of a finite group $G$ is a permutation $σ$ on $G$ fixing the identity element, and for which there exists an integer function $π$ on $G$ such that $σ(xy)=σ(x)σ^{π(x)}(y)$ for all $x,y\in G$. It has been known that given a skew-morphism $σ$ of $G$, the product of $\langle σ\rangle$ with the left regular representation of $G$ forms a permutation group on $G$, called the skew-product group of $σ$. In this paper, the skew-product groups of skew-morphisms of finite elementary abelian $p$-groups are investigated. Some properties, characterizations and constructions about that are obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源