论文标题

具有对抗性神经表示学习的异质领域适应:电子商务和网络安全实验

Heterogeneous Domain Adaptation with Adversarial Neural Representation Learning: Experiments on E-Commerce and Cybersecurity

论文作者

Ebrahimi, Mohammadreza, Chai, Yidong, Zhang, Hao Helen, Chen, Hsinchun

论文摘要

在新的领域中学习预测模型稀缺培训数据是现代监督学习方案的越来越多的挑战。这激励开发域的适应方法,这些方法利用已知域(源)中的知识,并以不同的概率分布来适应新的域(目标)。当源和目标域位于异质特征空间(称为异质域适应(HDA))中时,这将变得更具挑战性。虽然大多数HDA方法都利用数学优化将源数据和目标数据映射到公共空间,但它们的可传递性低。事实证明,神经表征更可转移;但是,它们主要是为均匀环境而设计的。利用领域适应理论,我们提出了一个新型框架,异质的对抗神经领域适应(Handa),以有效地最大程度地提高异质环境中的可传递性。汉达(Handa)在统一的神经网络架构中进行功能和分配对齐,并通过对抗内核学习实现域不变性。进行了三项实验,以评估有关主要图像和文本电子商务基准的最新HDA方法的性能。汉达(Handa)在预测性能方面表现出统计学上显着的改善。汉达的实用性已在真实世界的黑暗网络在线市场中显示。汉达(Handa)是在电子商务应用程序中成功适应领域的重要一步。

Learning predictive models in new domains with scarce training data is a growing challenge in modern supervised learning scenarios. This incentivizes developing domain adaptation methods that leverage the knowledge in known domains (source) and adapt to new domains (target) with a different probability distribution. This becomes more challenging when the source and target domains are in heterogeneous feature spaces, known as heterogeneous domain adaptation (HDA). While most HDA methods utilize mathematical optimization to map source and target data to a common space, they suffer from low transferability. Neural representations have proven to be more transferable; however, they are mainly designed for homogeneous environments. Drawing on the theory of domain adaptation, we propose a novel framework, Heterogeneous Adversarial Neural Domain Adaptation (HANDA), to effectively maximize the transferability in heterogeneous environments. HANDA conducts feature and distribution alignment in a unified neural network architecture and achieves domain invariance through adversarial kernel learning. Three experiments were conducted to evaluate the performance against the state-of-the-art HDA methods on major image and text e-commerce benchmarks. HANDA shows statistically significant improvement in predictive performance. The practical utility of HANDA was shown in real-world dark web online markets. HANDA is an important step towards successful domain adaptation in e-commerce applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源