论文标题
使用增强的部分分解的快速多源纳米光仿真
Fast multi-source nanophotonic simulations using augmented partial factorization
论文作者
论文摘要
全波模拟对于纳米光子学和电磁学是必不可少的,但对大型系统(尤其是多渠道的介质,培养基,上的偏移额度和密集的光子电路)受到严格限制,每个输入都需要大规模尺度模拟。在这里,我们绕过了麦克斯韦方程的计算要求解决方案,并直接评估了全波多输入响应,而没有近似值。我们使用所有输入源概况和输出投影概况增强了麦克斯韦操作员,然后进行单个部分分解,该分解直接通过SCHUR补充直接产生整个多输入散射矩阵。此方法易于实现,并适用于任何线性偏微分方程。它的优势随着大小的尺寸增长,比现有变量约为1,000亿至30,000,000亿倍的速度。我们使用它来实现第一个全波仿真的纠缠 - 光子反向散射,并从疾病和全角表征进行了数千个波长宽的高数字金属的表征。这项工作揭示了当我们重新考虑要计算什么并实现各种多通道系统的探索时,效率的显着提高。
Full-wave simulations are indispensable for nanophotonics and electromagnetics but are severely constrained on large systems, especially multi-channel ones such as disordered media, aperiodic metasurfaces, and densely packed photonic circuits where each input requires a large-scale simulation. Here we bypass the computationally demanding solution of Maxwell's equations and directly evaluate the full-wave multi-input response, with no approximation. We augment the Maxwell operator with all input source profiles and output projection profiles, followed by a single partial factorization that directly yields the entire multi-input scattering matrix via the Schur complement. This method is simple to implement and applies to any linear partial differential equation. Its advantage grows with size, being 1,000 to 30,000,000 times faster than existing methods for systems with about ten million variables. We use it to realize the first full-wave simulations of entangled-photon backscattering from disorder and all-angle characterizations of high-numerical-aperture metalenses that are thousands of wavelengths wide. This work reveals the significant efficiency gain when we rethink what to compute and enables the exploration of diverse multi-channel systems.