论文标题
部分可观测时空混沌系统的无模型预测
Interaction of vortex stretching with wind power fluctuations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The transfer of turbulence kinetic energy from large to small scales occurs through vortex stretching. Also, statistical properties of the subgrid-scale energy fluxes depend on the alignment of the vorticity vector with the principal strain axis. A heuristic analysis of the present study indicates that vortex-stretching and the second invariant of the velocity gradient tensor provide a scale-adaptive parameterization of the subgrid-scale stresses and the local energy fluxes in the wakes of wind turbines. The scale-adaptivity underlies the restricted Euler dynamics of the filtered motion that vortex-stretching plays in the growth of the second invariant of filtered velocity gradient and the local energy transfer. We have analyzed wind power fluctuations in a utility-scale wind farm with $41$ actuator disks. The numerical results show that the spectrum of the wind power fluctuations follows a power law with a logarithmic slope of $-5/3$. Furthermore, POD analysis indicates that the wind power fluctuations depend on the incoming turbulence and its modulation by the wake interactions in wind farms.