论文标题
微型磁铁极大地增强了二维电子流体中粘性流体动力流动的影响
Micromagnets dramatically enhance effects of viscous hydrodynamic flow in two-dimensional electron fluid
论文作者
论文摘要
在石墨烯和2D半导体异质结构中,电子流体在一定范围的温度和密度中的流体动力行为已得到很好的确定。流体动力状态本质上是基于电子电子相互作用,因此为研究电子相关提供了独特的机会。不幸的是,在所有现有测量值中,流体动力效应对运输的相对贡献很小。粘性的流体动力效应被杂质,与声子的相互作用,不受控制的边界和弹道效应掩盖。这本质上限制了电子粘度测量的准确性。从根本上讲,引起电子流体中粘性摩擦的原因是流动的特性,称为涡度。在本文中,我们建议使用微磁体来增加数量级的涡度。该提案的实验实现将使电子流体动力学达到定性的精确水平,并打开一种表征和外部控制电子流体的新方法。
The hydrodynamic behavior of electron fluids in a certain range of temperatures and densities is well established in graphene and in 2D semiconductor heterostructures. The hydrodynamic regime is intrinsically based on electron-electron interactions, and therefore it provides a unique opportunity to study electron correlations. Unfortunately, in all existing measurements, the relative contribution of hydrodynamic effects to transport is rather small. Viscous hydrodynamic effects are masked by impurities, interaction with phonons, uncontrolled boundaries and ballistic effects. This essentially limits the accuracy of measurements of electron viscosity. Fundamentally, what causes viscous friction in the electron fluid is the property of the flow called vorticity. In this paper, we propose to use micromagnets to increase the vorticity by orders of magnitude. Experimental realization of this proposal will bring electron hydrodynamics to a qualitatively new precision level, as well as opening a new way to characterize and externally control the electron fluid.