论文标题

着色圈的布置:新$ 4 $ - 奇异平面图

Coloring circle arrangements: New $4$-chromatic planar graphs

论文作者

Chiu, Man-Kwun, Felsner, Stefan, Scheucher, Manfred, Schröder, Felix, Steiner, Raphael, Vogtenhuber, Birgit

论文摘要

Felsner,Hurtado,Noy and Streinu(2000)猜想简单的大环形布置的布置图最多具有$ 3 $的色度。在这种猜想的驱动下,我们研究了(伪)不同类别的布置的布置图的可着色性。 在本文中,该猜想是针对$ \ triangle $饱和的伪圆的布置进行了验证的,即,对于仅由三角形组成的2色的一种颜色类别,以及(假)圆圈的进一步类别。这些结果是通过绘制$ \三角形$饱和布置的结构来补充的,并带有五角形的脸部,并带有4个4型4型布置图的布置。这种“电晕”结构与Koester(1985)引入的加冕建筑具有相似之处。基于详尽的实验,我们提出了原始猜想的三个增强。 我们还研究了分数着色。结果表明,成对相交伪圆的每个布置$ \ MATHCAL {a} $的布置图“接近”是$ 3 $ - 可油。更准确地说,布置图的分数色度$χ_f(\ Mathcal {a})$在上面由$χ_f(\ Mathcal {a})\ le 3+o(\ frac {\ frac {1} {n} {n})$限制。此外,我们构建了一个无限的家族$ 4 $ - 边缘至关重要的$ 4 $ - 定期平面图,分别是$ 3 $ - 颜色的。这反驳了Gimbel,Kündgen,Li和Thomassen(2019)的猜想。

Felsner, Hurtado, Noy and Streinu (2000) conjectured that arrangement graphs of simple great-circle arrangements have chromatic number at most $3$. Motivated by this conjecture, we study the colorability of arrangement graphs for different classes of arrangements of (pseudo-)circles. In this paper the conjecture is verified for $\triangle$-saturated pseudocircle arrangements, i.e., for arrangements where one color class of the 2-coloring of faces consists of triangles only, as well as for further classes of (pseudo-)circle arrangements. These results are complemented by a construction which maps $\triangle$-saturated arrangements with a pentagonal face to arrangements with 4-chromatic 4-regular arrangement graphs. This "corona" construction has similarities with the crowning construction introduced by Koester (1985). Based on exhaustive experiments with small arrangements we propose three strengthenings of the original conjecture. We also investigate fractional colorings. It is shown that the arrangement graph of every arrangement $\mathcal{A}$ of pairwise intersecting pseudocircles is "close" to being $3$-colorable. More precisely, the fractional chromatic number $χ_f(\mathcal{A})$ of the arrangement graph is bounded from above by $χ_f(\mathcal{A}) \le 3+O(\frac{1}{n})$, where $n$ is the number of pseudocircles of $\mathcal{A}$. Furthermore, we construct an infinite family of $4$-edge-critical $4$-regular planar graphs which are fractionally $3$-colorable. This disproves a conjecture of Gimbel, Kündgen, Li, and Thomassen (2019).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源