论文标题

一种人工神经网络算法,可从大气顶部取回西北欧洲架子的叶绿素A。

An Artificial Neural Network Algorithm to Retrieve Chlorophyll a for Northwest European Shelf Seas from Top of Atmosphere Ocean Colour Reflectance

论文作者

Hadjal, Madjid, Medina-López, Encarni, Ren, Jinchang, Gallego, Alejandro, McKee, David

论文摘要

叶绿素A(CHL)从海洋颜色遥感中检索对于相对浑浊的沿海水域是有问题的,这是由于非阿尔戈尔材料对大气校正和标准CHL算法性能的影响。人工神经网络(NNS)提供了一种从空间检索CHL的替代方法,并显示了2002 - 2020年期间西北欧洲货架海的结果。 NNS在15个Modis-Aqua可见和红外带上运行,并使用大气底部(BOA),大气顶(TOA)和Rayleigh校正TOA反射率(RC)进行了测试。在每种情况下,与当前使用的最新算法相比,由3层神经元组成的NN体系结构改善了性能和数据可用性。在TOA反射率上运行的NN优于BOA和RC版本。通过使用TOA反射数据,NN方法克服了沿海水域大气校正的常见但困难的问题。此外,NN提供了其他算法通常掩盖浑浊水或低温角旗的区域的数据。 NN方法的一个显着特征是基于训练数据集的多次重采样,以产生每个像素的值分布,并为北海的沿海时间序列显示一个示例。 NN方法的最终输出由基于每个像素的中位数的最佳图像和第二个图像,该图像基于每个像素的标准偏差,代表不确定性,提供了最终产品中不确定度的特定像素特异性估计。

Chlorophyll-a (Chl) retrieval from ocean colour remote sensing is problematic for relatively turbid coastal waters due to the impact of non-algal materials on atmospheric correction and standard Chl algorithm performance. Artificial neural networks (NNs) provide an alternative approach for retrieval of Chl from space and results in northwest European shelf seas over the 2002-2020 period are shown. The NNs operate on 15 MODIS-Aqua visible and infrared bands and are tested using bottom of atmosphere (BOA), top of atmosphere (TOA) and Rayleigh corrected TOA reflectances (RC). In each case, a NN architecture consisting of 3 layers of 15 neurons improved performances and data availability compared to current state-of-the-art algorithms used in the region. The NN operating on TOA reflectance outperformed BOA and RC versions. By operating on TOA reflectance data, the NN approach overcomes the common but difficult problem of atmospheric correction in coastal waters. Moreover, the NN provides data for regions which other algorithms often mask out for turbid water or low zenith angle flags. A distinguishing feature of the NN approach is generation of associated product uncertainties based on multiple resampling of the training data set to produce a distribution of values for each pixel, and an example is shown for a coastal time series in the North Sea. The final output of the NN approach consists of a best-estimate image based on medians for each pixel and a second image representing uncertainty based on standard deviation for each pixel, providing pixel-specific estimates of uncertainty in the final product.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源