论文标题
紧密的线性绑定到$(p_5,k_1+(k_1 \ cup k_3)的色度数字)$ - 免费图形
A tight linear bound to the chromatic number of $(P_5, K_1+(K_1\cup K_3))$-free graphs
论文作者
论文摘要
令$ f_1 $和$ f_2 $为两个不相交图。 Union $ f_1 \ cup f_2 $是带顶点套装$ v(f_1)\ cup v(f_2)$ and edge set $ e(f_1)\ cup e(f_2)$的图表\ {xy \; | \; x \ in V(f_1)\ mbox {and} y \ in V(f_2)\} $。在本文中,我们将特征呈现给$(p_5,k_1 \ cup k_3)$ - 免费图形,证明$χ(g)\le2Ω(g)-1 $如果$ g $是$(p_5,k_1 \ cup k_3)$。基于此结果,我们进一步证明$χ(g)\ le $ max $ \ {2Ω(g),15 \} $,如果$ g $是$(p_5,k_1+(k_1 \ cup k_3))$ - 免费图形 - 免费图形,并构建一个无限的家族$(p_5,k_1+$ g_1+cup g_1 $ g_1 $ g_1 $ g_3) $χ(g)=2Ω(g)$。
Let $F_1$ and $F_2$ be two disjoint graphs. The union $F_1\cup F_2$ is a graph with vertex set $V(F_1)\cup V(F_2)$ and edge set $E(F_1)\cup E(F_2)$, and the join $F_1+F_2$ is a graph with vertex set $V(F_1)\cup V(F_2)$ and edge set $E(F_1)\cup E(F_2)\cup \{xy\;|\; x\in V(F_1)\mbox{ and } y\in V(F_2)\}$. In this paper, we present a characterization to $(P_5, K_1\cup K_3)$-free graphs, prove that $χ(G)\le 2ω(G)-1$ if $G$ is $(P_5, K_1\cup K_3)$-free. Based on this result, we further prove that $χ(G)\le $max$\{2ω(G),15\}$ if $G$ is a $(P_5,K_1+( K_1\cup K_3))$-free graph, and construct an infinite family of $(P_5, K_1+( K_1\cup K_3))$-free graphs such that every graph $G$ in the family satisfies $χ(G)=2ω(G)$.