论文标题
局部综合定理
A comonadicity theorem for partial comodules
论文作者
论文摘要
我们表明,在hopf代数$ h $上的部分综合类别超过$ {\ sf vect} _k $,并使用拓扑矢量空间提供了该comonad的明确构造。 $ h $是有限维度时的情况。开始对线性代数组的部分表示的研究;我们表明,连接的线性代数群不承认偏见。
We show that the category of partial comodules over a Hopf algebra $H$ is comonadic over ${\sf Vect}_k$ and provide an explicit construction of this comonad using topological vector spaces. The case when $H$ is finite dimensional is treated in detail. A study of partial representations of linear algebraic groups is initiated; we show that a connected linear algebraic group does not admit partiality.