论文标题

在满足不稳定的薄空翼理论中的kutta条件时

On Satisfying the Kutta Condition in Unsteady Thin Aerofoil Theory

论文作者

Ramesh, Kiran

论文摘要

不稳定的薄壁油理论是一种低阶方法,用于在室内倾斜线上解决潜在的空气动力学,并进行任意运动。在这种方法中,必须在后端应用kutta条件,以唯一指定围绕弹能的净循环。本文提供了有关在不稳定流中应用kutta条件的批判性讨论,并在不稳定的薄色铝油理论中介绍了一种改进的方法。具体而言,在任何离散的时间步骤中均可唤醒,这是由源自确切的Wagner解决方案而不是点涡流或正则涡流BLOB的涡流的连续分布表示。文章中的结果说明了这种改善对攻击角度变化(Wagner问题),谐波重升运动(Theodorsen问题)和俯仰障碍物操作的影响。不可压缩的Euler方程的确切分析解决方案和CFD模拟用于验证。可以看到新方法可以满足所有降低频率的kutta条件,速度是有限的,压力差为零在后端。从理论严格,计算成本和数值准确性方面,它提高了不稳定的薄压油理论。

Unsteady thin-aerofoil theory is a low-order method for solving potential-flow aerodynamics on a camber-line undergoing arbitrary motion. In this method, a Kutta condition must be applied at the trailing edge to uniquely specify the net circulation about the aerofoil. This article provides a critical discussion on applying the Kutta condition in unsteady flows, and introduces an improved method of doing so in unsteady thin-aerofoil theory. Specifically, the shed wake at any discrete time step is represented by a continuous distribution of vorticity derived from the exact Wagner solution rather than by a point vortex or regularized vortex blob. Results in the article illustrate the effects of this improvement for cases of step change in angle of attack (Wagner problem), harmonic heaving motion (Theodorsen problem), and a pitch-ramp-hold manoeuvre. Exact analytical solutions and CFD simulations of the incompressible Euler equations are used for verification. The new approach is seen to satisfy the Kutta condition at all reduced frequencies, with velocities being finite and pressure difference going to zero at the trailing edge. It improves unsteady thin-aerofoil theory in terms of theoretical rigour, computational cost and numerical accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源