论文标题
通过实时近似贝叶斯推断,直观有效的人机合作
Intuitive and Efficient Human-robot Collaboration via Real-time Approximate Bayesian Inference
论文作者
论文摘要
协作机器人和端到端AI的结合承诺在工厂和仓库中灵活地自动化人工任务。但是,这样的承诺似乎取得了一些突破。同时,人类和配件将互相帮助。为了使这些合作有效且安全,机器人需要建模,预测和利用人类对响应式决策过程的意图。 近似贝叶斯计算(ABC)是一种逐个分析的方法,可在不确定数量的情况下执行概率预测。 ABC方便地包括先验,利用采样算法进行推理,并且可以灵活地受益于复杂模型,例如通过模拟器。但是,已知ABC在计算上太密集了,无法在有效的人类机器人协作任务所需的交互式帧速率上运行。 在本文中,我们将人类的意图预测作为ABC问题,并描述了允许以交互速率进行计算的两个关键绩效创新。我们通过协作机器人设置进行的真实世界实验证明了我们提出的方法的生存能力。实验评估传达了人类意图预测对包装合作任务的优点和价值。定性结果表明,预期人类的意图如何改善人类机器人的协作而不会损害安全性。定量任务流利度指标确认了定性主张。
The combination of collaborative robots and end-to-end AI, promises flexible automation of human tasks in factories and warehouses. However, such promise seems a few breakthroughs away. In the meantime, humans and cobots will collaborate helping each other. For these collaborations to be effective and safe, robots need to model, predict and exploit human's intents for responsive decision making processes. Approximate Bayesian Computation (ABC) is an analysis-by-synthesis approach to perform probabilistic predictions upon uncertain quantities. ABC includes priors conveniently, leverages sampling algorithms for inference and is flexible to benefit from complex models, e.g. via simulators. However, ABC is known to be computationally too intensive to run at interactive frame rates required for effective human-robot collaboration tasks. In this paper, we formulate human reaching intent prediction as an ABC problem and describe two key performance innovations which allow computations at interactive rates. Our real-world experiments with a collaborative robot set-up, demonstrate the viability of our proposed approach. Experimental evaluations convey the advantages and value of human intent prediction for packing cooperative tasks. Qualitative results show how anticipating human's reaching intent improves human-robot collaboration without compromising safety. Quantitative task fluency metrics confirm the qualitative claims.