论文标题
GraphCore IPU中的机密机器学习
Confidential Machine Learning within Graphcore IPUs
论文作者
论文摘要
我们提出了IPU Trust的扩展(ITX),这是一组实验性硬件扩展,可在GraphCore的AI加速器中启用受信任的执行环境。 ITX可以在低性能开销中执行具有强大机密性和完整性的AI工作负载。 ITX隔离了不受信任的主机的工作负载,并确保其数据和模型始终在IPU内部加密。 ITX包括一个可提供证明功能的硬件根源,并协调可信赖的执行,以及可编程的可编程加密引擎,用于在PCIE带宽上对代码和数据进行认证的加密。我们还以编译器和运行时扩展名的形式为ITX提供了软件,这些软件支持多方培训,而无需基于CPU的TEE。 GraphCore的GC200 IPU中包含了对ITX的实验支持,该GC200 IPU在TSMC的7NM技术节点上添加了胶带。它使用标准DNN培训工作负载对开发委员会的评估表明,与基于CPU的机密计算系统相比,ITX的性能高达不到5%,并且提供了高达17倍的性能。
We present IPU Trusted Extensions (ITX), a set of experimental hardware extensions that enable trusted execution environments in Graphcore's AI accelerators. ITX enables the execution of AI workloads with strong confidentiality and integrity guarantees at low performance overheads. ITX isolates workloads from untrusted hosts, and ensures their data and models remain encrypted at all times except within the IPU. ITX includes a hardware root-of-trust that provides attestation capabilities and orchestrates trusted execution, and on-chip programmable cryptographic engines for authenticated encryption of code and data at PCIe bandwidth. We also present software for ITX in the form of compiler and runtime extensions that support multi-party training without requiring a CPU-based TEE. Experimental support for ITX is included in Graphcore's GC200 IPU taped out at TSMC's 7nm technology node. Its evaluation on a development board using standard DNN training workloads suggests that ITX adds less than 5% performance overhead, and delivers up to 17x better performance compared to CPU-based confidential computing systems relying on AMD SEV-SNP.