论文标题
暂时性偏移的能源保护机制
An Energy Conserving Mechanism for Temporal Metasurfaces
论文作者
论文摘要
在波浪通过它传播时,更改时空超材料的微观结构特性,通常需要添加或去除能量,这可以取决于指数形式,具体取决于调制的类型。这限制了时空超材料的实现和应用。我们通过在非线性环境中引入一种在时间跨面上保存能量的新型机制来解决这个问题。首先通过考虑在1-D弹簧和质量链的离散介质中繁殖的波包传播来证明了这个想法,在该介质中,使用我们的能量保存机制,我们表明可以在几个时间界面上增加弹簧刚度,并且能量仍然可以保存。然后,我们考虑了在1-D和2-D弹簧质量系统中进行的有趣成像的有趣应用,其中波数据包在均质化方案中传播。我们的数值模拟表明,在1-D中,当波数据包击中时面时,生成了两组波,一个时间向前移动,另一个向后行驶。时光的波浪在源位置重新连接,我们观察到它的再生。在2-D中,我们使用更复杂的初始形状,即使那样,我们仍会观察到原始图像或源的再生。因此,我们在非线性系统中使用能量保存实现了时间转移的成像。节能机制可以很容易地扩展到连续介质。
Changing the microstructure properties of a space-time metamaterial while a wave is propagating through it, in general requires addition or removal of energy, which can be of exponential form depending on the type of modulation. This limits the realization and application of space-time metamaterials. We resolve this issue by introducing a novel mechanism of conserving energy at temporal metasurfaces in a non-linear setting. The idea is first demonstrated by considering a wave-packet propagating in a discrete medium of 1-d chain of springs and masses, where using our energy conserving mechanism we show that the spring stiffness can be incremented at several time interfaces and the energy will still be conserved. We then consider an interesting application of time-reversed imaging in 1-d and 2-d spring-mass systems with a wave packet traveling in the homogenized regime. Our numerical simulations show that, in 1-d, when the wave packet hits the time-interface two sets of waves are generated, one traveling forward in time and the other traveling backward. The time-reversed waves re-converge at the location of the source and we observe its regeneration. In 2-d, we use more complicated initial shapes and, even then, we observe regeneration of the original image or source. Thus, we achieve time-reversed imaging with conservation of energy in a non-linear system. The energy conserving mechanism can be easily extended to continuum media.