论文标题
汉克尔运营商的施密特子空间
Schmidt subspaces of Hankel operators
论文作者
论文摘要
我们考虑有限的Hankel运算符$H_ψ$作用于耐铁的空间$ h^2 $ to $ l^2 \ 2 \ ominus h^2 $,并在Schmidt子空间$ e^+_ s(H_ψ)$上获得定义为$ h_/ h_ar_病^{\ ast} h_ ast} h_月^2i $ s $ s $ e^+_ s(h_ψ)$的结果。这些空间最近在\ cite {gp}和\ cite {gp1}的上下文中进行了研究。我们还讨论了Hankel运算符的范围,符号是$ H^{\ infty} $的单位球中功能的复杂共轭。
We consider bounded Hankel operators $H_ψ$ acting on the Hardy space $H^2$ to $L^2\ominus H^2$ and obtain results on the Schmidt subspaces $E^+_s(H_ψ)$ of such operators defined as the kernels of $ H_ψ^{\ast}H_ψ-s^2I$ where $s>0$. These spaces have been recently studied in \cite{GP} and \cite{GP1} in the context of anti-linear Hankel operators. We also discuss the range of the Hankel operators with symbols being the complex conjugates of functions in the unit ball of $H^{\infty}$.