论文标题

通过流程多面体的两种简单产物的子分区代数

A subdivision algebra for a product of two simplices via flow polytopes

论文作者

von Bell, Matias

论文摘要

对于晶格路径$ν$从原点到点$(a,b)$使用步骤$ e =(1,0)$和$ n =(0,1)$,我们构造了一个关联的流polytope $ \ nathcal {f} _ {\ hat {ghat {g hat {g} _b(g} _b(n)_b(n n n n)} $从acycycelection poper wre bidirectional wre biDiRiDiriDiriDirectional wrecectional biDiRectional。我们表明,流polytope $ \ mathcal {f} _ {\ hat {g} _b(ν)} $接纳了$ w $ -simplex的细分双dual,其中$ w $是路径$ \ barbarν=eνn$中的v $ w $。可以通过减少允许负根部的无环根多型的梅萨罗斯(Mészáros)分区代数的多项式$p_ν$来获得此细分的改进。通过$ \ MATHCAL {f} _ {\ hat {g} _b(ν)} $与简单的产物$Δ_A\ timesδ_b$之间的整体等价性,我们从而为两个简单的产品获得了一个细分代数。作为一种特殊情况,我们给出了减少$P_ν$的减少订单,该$P_ν$产生了Ceballos,Padrol和Sarmiento的环状$ν$ -Tamari Complex。

For a lattice path $ν$ from the origin to a point $(a,b)$ using steps $E=(1,0)$ and $N=(0,1)$, we construct an associated flow polytope $\mathcal{F}_{\hat{G}_B(ν)}$ arising from an acyclic graph where bidirectional edges are permitted. We show that the flow polytope $\mathcal{F}_{\hat{G}_B(ν)}$ admits a subdivision dual to a $w$-simplex, where $w$ is the number of valleys in the path $\barν = EνN$. Refinements of this subdivision can be obtained by reductions of a polynomial $P_ν$ in a generalization of Mészáros' subdivision algebra for acyclic root polytopes where negative roots are allowed. Via an integral equivalence between $\mathcal{F}_{\hat{G}_B(ν)}$ and the product of simplices $Δ_a\times Δ_b$, we thereby obtain a subdivision algebra for a product of two simplices. As a special case, we give a reduction order for reducing $P_ν$ that yields the cyclic $ν$-Tamari complex of Ceballos, Padrol, and Sarmiento.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源