论文标题

超级高斯的指数衰减:足够的状态

Super-Gaussian Decay of Exponentials: A Sufficient Condition

论文作者

Hinrichs, Benjamin, Janssen, Daan Willem, Ziebell, Jobst

论文摘要

在本文中,我们为指数$ \ exp({ - f})$提出了足够的条件,使尾部衰减比任何高斯都更强,在本地凸出空间$ x $上定义了$ f $,并且比$ x $上的平方seminorm更快。特别是,我们的结果证明了$ \ exp({ - p(x)^{2+ \ varepsilon}+αq(x)^2})$对于所有$α,\ varepsilon> 0 $ w.r.t.如果$ p $和$ q $在核空间上进行的ra rad rad ra措施是$ x $的连续eminorms,并具有兼容的内核。这可以看作是Fernique定理的适应性,例如,在量子场理论中具有应用。

In this article, we present a sufficient condition for the exponential $\exp({-f})$ to have a tail decay stronger than any Gaussian, where $f$ is defined on a locally convex space $X$ and grows faster than a squared seminorm on $X$. In particular, our result proves that $\exp({-p(x)^{2+\varepsilon}+αq(x)^2})$ is integrable for all $α,\varepsilon>0$ w.r.t. a Radon Gaussian measure on a nuclear space $X$, if $p$ and $q$ are continuous seminorms on $X$ with compatible kernels. This can be viewed as an adaptation of Fernique's theorem and, for example, has applications in quantum field theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源