论文标题
$ sp(2n)$ yang-mills理论在晶格上:比例设置和拓扑
$Sp(2N)$ Yang-Mills theories on the lattice: scale setting and topology
论文作者
论文摘要
我们使用$ sp(n_c)$ gauge组研究杨 - 米尔斯晶格理论,$ n_c = 2n $,$ n = 1,\,\ cdots,\,\,4 $。我们表明,如果我们将$ sp(n_c)$ group的二次casimir $ c_2(f)$ casimir $ c_2(f)$ casimir $ c_2(f)划分在威尔逊流中的重新归一化的耦合,则结果数量在所有$ n_c $中显示出良好的协议,而在$ n_c $中显示了一个良好的协议。我们将Wilson流的缩放版本用作规模设定过程,计算$ sp(N_C)$理论的拓扑敏感性,并将结果推送到每个$ N_C $的连续性限制。
We study Yang-Mills lattice theories with $Sp(N_c)$ gauge group, with $N_c=2N$, for $N=1,\,\cdots,\,4$. We show that if we divide the renormalised couplings appearing in the Wilson flow by the quadratic Casimir $C_2(F)$ of the $Sp(N_c)$ group, then the resulting quantities display a good agreement among all values of $N_c$ considered, over a finite interval in flow time. We use this scaled version of the Wilson flow as a scale-setting procedure, compute the topological susceptibility of the $Sp(N_c)$ theories, and extrapolate the results to the continuum limit for each $N_c$.