论文标题

推断大脑表示的示例性可区分性

Inferring exemplar discriminability in brain representations

论文作者

Nili, Hamed, Walther, Alexander, Alink, Arjen, Kriegeskorte, Nikolaus

论文摘要

类别内的代表性区别在所有感知方式以及认知和运动表示方面都很重要。脑活动的最新模式信息研究已使用富含条件的设计来更密集地品尝刺激空间。为了测试大脑反应模式是否在具有良好灵敏度的一组刺激(例如类别中的示例)中区分了是否有区别,我们可以在所有成对比较的情况下汇总统计证据。在这里,我们描述了示例性可区分性的广泛统计检验,并评估每个测试的有效性(特异性)和功率(灵敏度)。这些测试包括先前使用的和新颖的,参数和非参数测试,这些测试将受试者视为随机或固定效应,并且基于不同的差异措施,不同的测试统计数据和不同的推理程序。我们使用模拟和真实数据来确定哪些测试有效,哪些测试最敏感。反映示例性信息的流行测试统计量是示例性可区分性指数(EDI),该指数定义为不同示例之间的模式差异估计的平均值减去相同典型典范的重复之间的模式差异估计的平均值。 EDI的流行跨主体t检验(通常使用相关距离作为模式差异度量)需要假设EDI在H0下是0均值的正常情况。尽管此假设并非严格地正确,但我们的模拟表明该测试在标称级别控制错误的阳性率,因此在实践中是有效的。但是,基于平均马哈拉诺邦距离或平均线性歧视t值的测试统计数据(两者都在响应之间考虑了多元误差协方差)对于随机和固定效应推断而言,基本上更强大。

Representational distinctions within categories are important in all perceptual modalities and also in cognitive and motor representations. Recent pattern-information studies of brain activity have used condition-rich designs to sample the stimulus space more densely. To test whether brain response patterns discriminate among a set of stimuli (e.g. exemplars within a category) with good sensitivity, we can pool statistical evidence over all pairwise comparisons. Here we describe a wide range of statistical tests of exemplar discriminability and assess the validity (specificity) and power (sensitivity) of each test. The tests include previously used and novel, parametric and nonparametric tests, which treat subject as a random or fixed effect, and are based on different dissimilarity measures, different test statistics, and different inference procedures. We use simulated and real data to determine which tests are valid and which are most sensitive. A popular test statistic reflecting exemplar information is the exemplar discriminability index (EDI), which is defined as the average of the pattern dissimilarity estimates between different exemplars minus the average of the pattern dissimilarity estimates between repetitions of identical exemplars. The popular across-subject t test of the EDI (typically using correlation distance as the pattern dissimilarity measure) requires the assumption that the EDI is 0-mean normal under H0. Although this assumption is not strictly true, our simulations suggest that the test controls the false-positives rate at the nominal level, and is thus valid, in practice. However, test statistics based on average Mahalanobis distances or average linear-discriminant t values (both accounting for the multivariate error covariance among responses) are substantially more powerful for both random- and fixed-effects inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源