论文标题

拉格曼人和旗帜歧管的三角剖分

Triangulations of Grassmannians and flag manifolds

论文作者

Abawonse, Olakunle S

论文摘要

麦克弗森(MacPherson)猜想格拉曼尼亚$ \ mathrm {gr}(2,\ mathbb {r}^n)$具有与组合grassmannian $ \ | \ mbox {macp} {macp}(2,n)\ | $相同的同构类型类型$ \ mathrm {gr}(2,\ mathbb {r}^n)$和$ \ mathrm {Grm {gr}(1,2,\ Mathbb {r}^n)$是同等的$ \ | \ mbox {macp}(1,2,n)\ | $。我们将证明$ \ mathrm {gr}(2,\ mathbb {r}^n)$和$ \ mathrm {grm {gr}(1,2,\ mathbb {r}^n)$是同型对$ \ | \ | \ | \ | \ mbox {MACP}(MACP}(2,N) $ \ | \ mbox {macp}(1,2,n)\ | $。

MacPherson conjectured that the Grassmannian $\mathrm{Gr}(2, \mathbb{R}^n)$ has the same homeomorphism type as the combinatorial Grassmannian $\|\mbox{MacP}(2,n)\|$, while Babson proved that the spaces $\mathrm{Gr}(2,\mathbb{R}^n)$ and $\mathrm{Gr}(1,2,\mathbb{R}^n)$ are homotopy equivalent to their combinatorial analogs $\|\mathrm{MacP}(2,n)\|$ and $\|\mbox{MacP}(1,2,n)\|$ respectively. We will prove that $\mathrm{Gr}(2, \mathbb{R}^n)$ and $\mathrm{Gr}(1,2, \mathbb{R}^n)$ are homeomorphic to $\|\mbox{MacP}(2,n)\|$ and $\|\mbox{MacP}(1,2,n)\|$ respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源