论文标题
兵团:基于大脑MRI分割的相似性等级的无成本严格伪标记
CORPS: Cost-free Rigorous Pseudo-labeling based on Similarity-ranking for Brain MRI Segmentation
论文作者
论文摘要
大脑磁共振图像(MRI)的分割对于分析人脑和各种脑疾病的诊断至关重要。耗时和容易出错的手动描述程序的缺点旨在通过基于ATLAS和监督的机器学习方法来缓解,这些方法在计算上是计算强度的,而后一种方法缺乏足够多的标记数据。有了这种动机,我们提出了群岛,这是建立在基于ATLAS的新型伪标记方法和3D深卷积神经网络(DCNN)的半监督分割框架(DCNN)上,用于3D脑MRI分割。在这项工作中,我们建议基于基于局部强度的相似性得分与现有标记的图像集的基于局部强度的相似性得分,并使用基于ATLAS的新型标签融合方法生成专家级伪标签,以制定未标记的图像集。然后,我们建议训练3D DCNN,以结合专家和伪标记的图像,用于每种解剖结构的二进制分割。提出了二进制分割方法,以避免在有限和不平衡数据上使用多级分割方法的性能不佳。这还允许使用过滤器的数量和保留内存资源的数量来使用轻巧有效的3D DCNN,以训练在全尺度和完整分辨率3D MRI量的二进制网络,而不是2D/3D补丁或2D片。因此,所提出的框架可以将每个维度的空间连续性封装并增强上下文意识。实验结果表明,所提出的框架优于基线方法,既有定性和定量,却没有手动标记的额外标记成本。
Segmentation of brain magnetic resonance images (MRI) is crucial for the analysis of the human brain and diagnosis of various brain disorders. The drawbacks of time-consuming and error-prone manual delineation procedures are aimed to be alleviated by atlas-based and supervised machine learning methods where the former methods are computationally intense and the latter methods lack a sufficiently large number of labeled data. With this motivation, we propose CORPS, a semi-supervised segmentation framework built upon a novel atlas-based pseudo-labeling method and a 3D deep convolutional neural network (DCNN) for 3D brain MRI segmentation. In this work, we propose to generate expert-level pseudo-labels for unlabeled set of images in an order based on a local intensity-based similarity score to existing labeled set of images and using a novel atlas-based label fusion method. Then, we propose to train a 3D DCNN on the combination of expert and pseudo labeled images for binary segmentation of each anatomical structure. The binary segmentation approach is proposed to avoid the poor performance of multi-class segmentation methods on limited and imbalanced data. This also allows to employ a lightweight and efficient 3D DCNN in terms of the number of filters and reserve memory resources for training the binary networks on full-scale and full-resolution 3D MRI volumes instead of 2D/3D patches or 2D slices. Thus, the proposed framework can encapsulate the spatial contiguity in each dimension and enhance context-awareness. The experimental results demonstrate the superiority of the proposed framework over the baseline method both qualitatively and quantitatively without additional labeling cost for manual labeling.