论文标题

超越贪婪的搜索:基于多机构增强学习的梁搜索跟踪

Beyond Greedy Search: Tracking by Multi-Agent Reinforcement Learning-based Beam Search

论文作者

Wang, Xiao, Chen, Zhe, Jiang, Bo, Tang, Jin, Luo, Bin, Tao, Dacheng

论文摘要

为了跟踪视频中的目标,当前的视觉跟踪器通常会在每个帧中对目标对象定位进行贪婪搜索,也就是说,将选择最大响应分数的候选区域作为每个帧的跟踪结果。但是,我们发现这可能不是一个最佳选择,尤其是在遇到具有挑战性的跟踪方案(例如重闭塞和快速运动)时。为了解决这个问题,我们建议维护多个跟踪轨迹并将光束搜索策略应用于视觉跟踪,以便可以识别出更少的累积错误的轨迹。因此,本文介绍了一种新型的基于梁搜索策略的新型多项式增强学习策略,称为横梁。它主要是受图像字幕任务的启发,该任务将图像作为输入,并使用Beam搜索算法生成多种描述。因此,我们通过多个并行决策过程来表达跟踪作为样本选择问题,每个过程旨在在每个帧中挑选一个样本作为其跟踪结果。每个维护的轨迹都与代理人相关联,以执行决策并确定应采取哪些操作来更新相关信息。处理所有帧时,我们选择具有最大累积分数的轨迹作为跟踪结果。在七个流行的基准数据集上进行了广泛的实验证实了所提出算法的有效性。

To track the target in a video, current visual trackers usually adopt greedy search for target object localization in each frame, that is, the candidate region with the maximum response score will be selected as the tracking result of each frame. However, we found that this may be not an optimal choice, especially when encountering challenging tracking scenarios such as heavy occlusion and fast motion. To address this issue, we propose to maintain multiple tracking trajectories and apply beam search strategy for visual tracking, so that the trajectory with fewer accumulated errors can be identified. Accordingly, this paper introduces a novel multi-agent reinforcement learning based beam search tracking strategy, termed BeamTracking. It is mainly inspired by the image captioning task, which takes an image as input and generates diverse descriptions using beam search algorithm. Accordingly, we formulate the tracking as a sample selection problem fulfilled by multiple parallel decision-making processes, each of which aims at picking out one sample as their tracking result in each frame. Each maintained trajectory is associated with an agent to perform the decision-making and determine what actions should be taken to update related information. When all the frames are processed, we select the trajectory with the maximum accumulated score as the tracking result. Extensive experiments on seven popular tracking benchmark datasets validated the effectiveness of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源