论文标题

确定性张量网络分类器

Deterministic Tensor Network Classifiers

论文作者

Wright, L., Barratt, F., Dborin, J., Wimalaweera, V., Coyle, B., Green, A. G.

论文摘要

我们提出张量网络,以提取特征和分类器性能的完善。这些网络可以确定性初始化,并具有实施近期中级量子(NISQ)设备的潜力。功能提取通过直接组合和压缩图像对幅度编码的图像进行编码,仅在$ \ log n _ {\ text {pixels}} $ qubits上进行。性能是使用“量子堆叠”来完善的,这是一种确定性方法,可以应用于任何分类器的预测,无论结构如何,并使用数据重新上传在NISQ设备上实现。这些过程应用于数据的张量网络编码,并针对10类MNIST和时尚MNIST数据集进行了基准测试。在没有任何各种培训的情况下,可以实现良好的训练和测试精度。

We present tensor networks for feature extraction and refinement of classifier performance. These networks can be initialised deterministically and have the potential for implementation on near-term intermediate-scale quantum (NISQ) devices. Feature extraction proceeds through a direct combination and compression of images amplitude-encoded over just $\log N_{\text{pixels}}$ qubits. Performance is refined using `Quantum Stacking', a deterministic method that can be applied to the predictions of any classifier regardless of structure, and implemented on NISQ devices using data re-uploading. These procedures are applied to a tensor network encoding of data, and benchmarked against the 10 class MNIST and fashion MNIST datasets. Good training and test accuracy are achieved without any variational training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源