论文标题

超越标签:骨髓细胞形态识别的视觉表示

Beyond Labels: Visual Representations for Bone Marrow Cell Morphology Recognition

论文作者

Fazeli, Shayan, Samiei, Alireza, Lee, Thomas D., Sarrafzadeh, Majid

论文摘要

分析和检查骨髓细胞细胞形态是血液病理学诊断的关键但高度复杂且耗时的成分。人工智能的最新进步为将深度学习算法应用于复杂的医疗任务铺平了道路。然而,将有效的学习算法应用于医学图像分析方面存在许多挑战,例如缺乏足够且可靠的注释培训数据集以及大多数医学数据的高度不平衡性质。在这里,我们通过从唯一依赖标记的数据并利用自学的学习模型来改善了骨髓细胞识别的最新方法论。我们研究方法在鉴定骨髓细胞类型方面的有效性。我们的实验表明,与当前的最新方法相比,在进行不同的骨髓细胞识别任务方面的性能得到了显着改善。

Analyzing and inspecting bone marrow cell cytomorphology is a critical but highly complex and time-consuming component of hematopathology diagnosis. Recent advancements in artificial intelligence have paved the way for the application of deep learning algorithms to complex medical tasks. Nevertheless, there are many challenges in applying effective learning algorithms to medical image analysis, such as the lack of sufficient and reliably annotated training datasets and the highly class-imbalanced nature of most medical data. Here, we improve on the state-of-the-art methodologies of bone marrow cell recognition by deviating from sole reliance on labeled data and leveraging self-supervision in training our learning models. We investigate our approach's effectiveness in identifying bone marrow cell types. Our experiments demonstrate significant performance improvements in conducting different bone marrow cell recognition tasks compared to the current state-of-the-art methodologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源